首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   729篇
  免费   145篇
  国内免费   34篇
测绘学   79篇
大气科学   14篇
地球物理   328篇
地质学   186篇
海洋学   7篇
综合类   54篇
自然地理   240篇
  2024年   2篇
  2023年   6篇
  2022年   16篇
  2021年   37篇
  2020年   37篇
  2019年   39篇
  2018年   35篇
  2017年   42篇
  2016年   35篇
  2015年   38篇
  2014年   52篇
  2013年   82篇
  2012年   40篇
  2011年   41篇
  2010年   28篇
  2009年   38篇
  2008年   42篇
  2007年   58篇
  2006年   47篇
  2005年   41篇
  2004年   27篇
  2003年   28篇
  2002年   23篇
  2001年   19篇
  2000年   10篇
  1999年   10篇
  1998年   4篇
  1997年   5篇
  1996年   4篇
  1995年   3篇
  1994年   5篇
  1993年   1篇
  1992年   3篇
  1991年   2篇
  1990年   2篇
  1989年   1篇
  1988年   2篇
  1986年   1篇
  1983年   1篇
  1972年   1篇
排序方式: 共有908条查询结果,搜索用时 15 毫秒
71.
72.
区域Gamma混合模型的SAR图像分割   总被引:1,自引:0,他引:1  
针对传统Gamma混合模型用于SAR图像分割时忽略像素间空间相关性,导致分割结果不连续并产生大量误分割的现象,提出了区域Gamma混合模型的SAR图像分割算法。首先对图像进行分水岭分割,得到过分割区域块,然后将其作为输入样本进行基于Gamma混合模型的聚类,在模型的参数估计过程中进一步考虑区域间的空间相关性,设计邻域因子融入到迭代过程,得到邻域加权类分布概率。该算法充分利用像素间的空间相关性,能够降低噪声对分割结果的影响。通过合成图像和真实SAR图像的实验表明,本文算法能够实现SAR图像的准确分割。  相似文献   
73.
精准空间划分是实现室内语义建模与拓扑结构重建的重要基础。三维点云作为常用的室内空间数据载体,如何基于三维点云进行室内空间语义信息提取与规则化具有重要意义。本文提出了一种基于形态学分割方法实现室内场景的分割,并结合矢量规则化方法完成分割场景的规则化。首先,基于区域增长算法与线性拟合方法提取空间分割要素,通过平面投影生成二进制影像,进而利用距离变换和分水岭算法完成空间分割;然后,对空间分割要素进行线性拟合,进行室内空间格网划分,采用矢栅叠加方法实现空间要素规则化;最后,通过4组实际场景(包含3组ISPRS数据集及1组实际场景采集数据)进行数据验证。试验结果显示,本文提出的室内空间分割与规则化方法可以准确快速地完成室内空间要素的提取。  相似文献   
74.
廖晓超  许模  蒋莉  赵瑞  苟敬 《地下水》2014,(1):48-49,52
由于铁路隧道的施工,地下水进入隧道,形成了新的排泄基准面,对区域地下水环境产生较大影响,故对该类问题进行深入研究具有重要的工程实践意义。以中坝岩溶隧道为例,采用Visual modflow对中坝隧道进行三维数值模拟,模拟中坝隧道开挖建设后,地下分水岭的演化过程,以此来探讨分析其对地下水环境的影响。  相似文献   
75.
At present, the research on the layout of rural residential areas in the mountainous environment under the threat of earthquake disasters and frequent geological disasters is still rare. Taking Yinchanggou watershed in Longmenshan Town of Pengzhou City as an example, based on the summary of the geological hazard development characteristics in this area, the authors carried out the hazard risk zoning through 8 indexes. Then the geological hazard risk zoning was used as the primary factor to evaluate the suitability of rural residential areas. Besides, combined with the topographical conditions, socio-economic situation and ecological environment, a suitable evaluation index system for rural residential land under the threat of geological disasters was constructed, with the restrictive conditions of extremely high-risk areas, single geological hazards, slopes ≥25° and basic farmland protection areas. Finally, the fuzzy comprehensive evaluation method was used to evaluate the suitability of residential land in Yinchanggou watershed of Pengzhou City. The results show that high suitability areas account for 4.2% of the total area of the study area, moderate suitability areas 11.4%, low suitability areas 10.5%, and unsuitable areas 73.8%. The “suitable” areas for rural residential land are mainly distributed along the highway, and some are multiple “blocky” concentrated distribution areas. The terrain is flat and the traffic condition is convenient, which can provide some guidance for the selection of new rural residential locations.  相似文献   
76.
Yu  Xia  Zhou  Weijian  Wang  Yunqiang  Cheng  Peng  Hou  Yaoyao  Xiong  Xiaohu  Du  Hua  Yang  Ling  Wang  Ya 《地理学报(英文版)》2020,30(6):921-934
The vertical distribution and exchange mechanisms of soil organic and inorganic carbon(SOC, SIC) play an important role in assessing carbon(C) cycling and budgets. However, the impact of land use through time for deep soil C(below 100 cm) is not well known. To investigate deep C storage under different land uses and evaluate how it changes with time, we collected soil samples to a depth of 500 cm in a soil profile in the Gutun watershed on the Chinese Loess Plateau(CLP); and determined SOC, SIC, and bulk density. The magnitude of SOC stocks in the 0–500 cm depth range fell into the following ranking: shrubland(17.2 kg m~(-2)) grassland(16.3 kg m~(-2)) forestland(15.2 kg m~(-2)) cropland(14.1 kg m~(-2)) gully land(6.4 kg m~(-2)). The ranking for SIC stocks were: grassland(104.1 kg m~(-2)) forestland(96.2 kg m~(-2)) shrubland(90.6 kg m~(-2)) cropland(82.4 kg m~(-2)) gully land(50.3 kg m~(-2)). Respective SOC and SIC stocks were at least 1.6-and 2.1-fold higher within the 100–500 cm depth range, as compared to the 0–100 cm depth range. Overall SOC and SIC stocks decreased significantly from the 5 th to the 15 th year of cultivation in croplands, and generally increased up to the 70 th year. Both SOC and SIC stocks showed a turning point at 15 years cultivation, which should be considered when evaluating soil C sequestration. Estimates of C stocks greatly depends on soil sampling depth, and understanding the influences of land use and time will improve soil productivity and conservation in regions with deep soils.  相似文献   
77.
Steven M. Wondzell 《水文研究》2011,25(22):3525-3532
Many hyporheic papers state that the hyporheic zone is a critical component of stream ecosystems, and many of these papers focus on the biogeochemical effects of the hyporheic zone on stream solute loads. However, efforts to show such relationships have proven elusive, prompting several questions: Are the effects of the hyporheic zone on stream ecosystems so highly variable in place and time (or among streams) that a consistent relationship should not be expected? Or, is the hyporheic zone less important in stream ecosystems than is commonly expected? These questions were examined using data from existing groundwater modelling studies of hyporheic exchange flow at five sites in a fifth‐order, mountainous stream network. The size of exchange flows, relative to stream discharge (QHEF:Q), was large only in very small streams at low discharge (area ≈ 100 ha; Q < 10 l/s). At higher flows (flow exceedance probability > 0·7) and in all larger streams, QHEF:Q was small. These data show that biogeochemical processes in the hyporheic zone of small streams can substantially influence the stream's solute load, but these processes become hydrologically constrained at high discharge or in larger streams and rivers. The hyporheic zone may influence stream ecosystems in many ways, however, not just through biogeochemical processes that alter stream solute loads. For example, the hyporheic zone represents a unique habitat for some organisms, with patterns and amounts of upwelling and downwelling water determining the underlying physiochemical environment of the hyporheic zone. Similarly, hyporheic exchange creates distinct patches of downwelling and upwelling. Upwelling environments are of special interest, because upwelling water has the potential to be thermally or chemically distinct from stream water. Consequently, micro‐environmental patches created by hyporheic exchange flows are likely to be important to biological and ecosystem processes, even if their impact on stream solute loads is small. Published in 2011 by John Wiley & Sons, Ltd.  相似文献   
78.
We want to develop a dialogue between geophysicists and hydrologists interested in synergistically advancing process based watershed research. We identify recent advances in geophysical instrumentation, and provide a vision for the use of electrical and magnetic geophysical instrumentation in watershed scale hydrology. The focus of the paper is to identify instrumentation that could significantly advance this vision for geophysics and hydrology during the next 3–5 years. We acknowledge that this is one of a number of possible ways forward and seek only to offer a relatively narrow and achievable vision. The vision focuses on the measurement of geological structure and identification of flow paths using electrical and magnetic methods. The paper identifies instruments, provides examples of their use, and describes how synergy between measurement and modelling could be achieved. Of specific interest are the airborne systems that can cover large areas and are appropriate for watershed studies. Although airborne geophysics has been around for some time, only in the last few years have systems designed exclusively for hydrological applications begun to emerge. These systems, such as airborne electromagnetic (EM) and transient electromagnetic (TEM), could revolutionize hydrogeological interpretations. Our vision centers on developing nested and cross scale electrical and magnetic measurements that can be used to construct a three‐dimensional (3D) electrical or magnetic model of the subsurface in watersheds. The methodological framework assumes a ‘top down’ approach using airborne methods to identify the large scale, dominant architecture of the subsurface. We recognize that the integration of geophysical measurement methods, and data, into watershed process characterization and modelling can only be achieved through dialogue. Especially, through the development of partnerships between geophysicists and hydrologists, partnerships that explore how the application of geophysics can answer critical hydrological science questions, and conversely provide an understanding of the limitations of geophysical measurements and interpretation. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
79.
This paper investigates the variation of the popular curve number (CN) values given in the National Engineering Hand Book–Section 4 (NEH‐4) of the Soil Conservation Service (SCS) with antecedent moisture condition (AMC) and soil type. Using the volumetric concept, involving soil, water, and air, a significant condensation of the NEH‐4 tables is achieved. This leads to a procedure for determination of CN for gauged as well as ungauged watersheds. The rainfall‐runoff events derived from daily data of four Indian watersheds exhibited a power relation between the potential maximum retention or CN and the 5‐day antecedent rainfall amount. Including this power relation, the SCS‐CN method was modified. This modification also eliminates the problem of sudden jumps from one AMC level to the other. The runoff values predicted using the modified method and the existing method utilizing the NEH‐4 AMC criteria yielded similar results. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号